NILS Niedersächsische Lernwerkstatt für solare Energiesysteme

am Institut für Solarenergieforschung ISFH Hameln Geschäftsführer Prof. Dr. R. Brendel An- Institut der Leibniz Universität Hannover

Tel.: 05151 999 100 Fax: 05151 999 400 Am Ohrberg 1 – D-31860 Emmerthal email: nils@isfh.de web: www.nils-isfh.de www.isfh.de mobil: 0175 766 06 07 (W.R. Schanz)

Photovoltaik-System SUSE

Solarthermiesystem Wärme von der Sonne

Leibniz Universität Hannover Begabungsförderung in Hannover und Region

innovative Solarsysteme für Schule und Ausbildung

Name:	Schule	Datum
-------	--------	-------

Experimente mit 2 Solarmodulen 5W + 10W

2 Solarmodule im Vergleich, Leistungs- und Qualitätsanalysen

SUSE 4.51 5W und SUSE 4.52 10W

Lernstation

Basiswissen und Ziele der Experimente:

Solarmodule im Leistungsbereich 5W....50W bestehen meist aus 18 oder 36 Solarzellen in interner Reihenschaltung unter Solarglas mit einem stabilen Aluminium-Rahmen. Die Nennleistung wird jedoch nur bei bestimmten Wetterdaten erreicht: S = 1000W/m² (strahlender Sonnenschein im Sommer ohne Wolken), T = 25°C, AM1,5. Bei bewölktem Himmel ist die Leistung meist wesentlich geringer. Diese reale Leistung outdoor werden wir im Experiment messen. Weiterhin lassen sich die Wirkungsgrade der Solarzellen und des gesamten Moduls mit den technischen Daten des Herstellers berechnen und so Module in ihrer Leistung und Qualität vergleichen. Aus dem Kurzschlussstrom können wir auch die Stärke der Solarstrahlung = Bestrahlungsstärke S bestimmen.

Notwendige Versuchsgeräte:

2 Solarmodule: 5W SUSE 451 + 10 W SUSE 4.52 mit Anschlusskabel, 1 Multimeter mit 2 Kabeln rot/schwarz, Taschenrechner oder Taschenrechner im smartphone, Lineal, für Experimente im Innenraum Halogenstrahler 400W + schaltbare Tischsteckdose.

> Die 2 Solarmodule des Experiments links: SUSE 4.51 5W, rechts: SUSE 4.52 10W

Die Experimente: Experiment 1 ca. 20min, Experiment 2 ca. 20 min.

Bei Zeitlimit wähle 1 Experiment aus!

Experiment 1: Qualitätsanalysen durch Berechnungen unter Verwendung der technischen Daten

Bestimmung des Wirkungsgrades der im Modul verwendeten Solarzellen

a) Aus den technischen Daten (auf der Modul- Rückseite)lässt sich der Zell-Wirkungsgrad einfach berechnen, wir benötigen dazu die exakte Fläche der Solarzelle, die wir mit dem Lineal aus den Zellmaßen bestimmen. Bitte mmgenau messen!

genaa messem	Maße für 1 Solarzelle !		Flache für 1 Solarzelle !
Modul und Anzahl der Solarzellen	Länge in cm	Breite in cm	Fläche in cm ²
Solarmodul 1 Leistung 5 W Anzahl der Solarzellen im Modul:			
Solarmodul 2 Leistung 10 W Anzahl der Solarzellen im Modul:			

b) Aus der elektrischen Gesamtleistung des Moduls im MPP bestimmen wir die Leistung von 1 Solarzelle, indem wir sie durch die Anzahl der Solarzellen dividieren.

Modul 1: El. Leistung **einer** Solarzelle P_E:.....W

Modul 2: El. Leistung einer Solarzelle P_E:.....W

c) Diese Leistung erreicht die Solarzelle nur bei einer Bestrahlungsstärke von S = 1000 W/m² = 0,1 W/cm², wenn wir diesen Wert mit der Fläche der Solarzelle multiplizieren erhalten wir die in die Solarzelle eingestrahlte Lichtleistung PL

Setzen wir die elektrische Leistung P_E und die Lichtleistung P_L ins Verhältnis, erhalten wir den Zellwirkungsgrad:

Hinweis: **Zell**wirkungsgrade liegen aktuell **zwischen 15% und 22%**, vergleichen Sie mit den berechneten Werten!

Experiment 1.2: Bestimmung des Modulwirkungsgrades beider Solarmodule

Der **Modulwirkungsgrad** bezieht die gesamte Modulfläche ein, auch die Leerräume, je weniger Leerräume zwischen den Solarzellen sind, desto besser ist der Modulwirkungsgrad, den bestimmen wir im Prinzip genau so:

Modul 1: Außenmaße:_____cm x ____cm Fläche 1 = ____cm²

Modul 2: Außenmaße:cm xcm Fläche 2=cm²

Lichtleistung P_L auf das gesamte Modul 1= Fläche 1 * 0,1W/cm² = P_L.....W

Lichtleistung P_L auf das gesamte Modul 2= Fläche 2 * 0,1W/cm² = P_L......W

Modulwirkungsgrad Modul 1: ----------------*100 = $\frac{\text{Modulwirkungsgrad}......%}{\text{Lichtleistung P}_{L}}$

Je höher Zell- und Modulwirkungsgrade sind, desto höher ist die Qualität des Solarmoduls.

Hinweis: **Modul**wirkungsgrade liegen aktuell **zwischen 12% und 18%,** vergleichen Sie mit den berechneten Werten!

Ein weiterer Qualitätsfaktor wäre die **Leistungsdichte**, wieviel W Leistung erzeugt jeweils 1 cm² des Moduls:

Leistung in W

Solarmodul 1: ----- = Leistungsdichte 1.....W/cm²

Fläche in cm²

Leistung in W

Solarmodul 2: ----- = Leistungsdichte 2.....W/cm²

Fläche in cm²

Was fällt Dir/Ihnen auf, wie gut sind beide Module? Wie unterscheiden sie sich technisch und im Design? Notiere die Auswertung/Erklärungen hier:

Experimente 2: Wieviel Leistung erzeugen die Solarmodule bei der aktuellen Wetterlage?

In Mitteleuropa ist die Wetterlage häufig bewölkt, so dass die maximale Modulleistung nicht erreicht wird. Bei Bewölkung gehen die Bestrahlungsstärke des Lichts und dadurch die elektrische Leistung des Solarmoduls erheblich zurück. Dieses Phänomen wollen wir durch Messungen und Berechnungen analysieren.

Die aktuelle Wetterlage heute amumumUhr:					

Wir gehen mit dem Modul ins Freie und richten es optimal zur Sonne/zum Himmel aus, bei Dunkelheit oder Regenwetter bestrahlen wir im Innenraum die Module mit einem Halogenstrahler 400W in ca. 40 cm Abstand.

Modul 1: Wir messen mit dem Multimeter den aktuellen Kurzschlussstrom I_{sc} im Messbereich 10A DC und richten das Modul in Azimuth und Elevation so aus, dass der Wert den maximalen Wert annimmt, den Wert notieren wir hier, entsprechend messen wir nun die aktuelle Leerlaufspannung U_{oc} im Messbereich 200 V DC und notieren diesen Wert ebenfalls:

Entsprechend führen wir diese Messungen mit Modul 2 durch:

Modul 2:

Aus beiden Messwerten können wir die aktuelle Modulleistung näherungsweise berechnen:

 $P = U_{oc} * I_{sc} * 0,75$ Der Faktor 0,75 ergibt sich aus der Leistungskurve und kann experimentell ermittelt werden.

Daraus berechnen wir die aktuelle Leistung Pakt beider Module bei der realen Wetterlage:

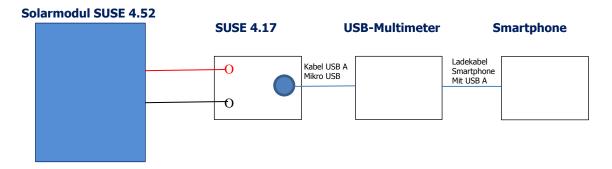
Aus dem Kurzschlussstrom eines Moduls können wir die aktuelle Bestrahlungsstärke bestimmen, da der Kurzschlussstrom direkt proportional zur Bestrahlungsstärke S ist:

$$\mathbf{S}_{\text{akt}} = \frac{\mathbf{I}_{\text{scaktuell}} * 1000}{\mathbf{I}_{\text{sc}} \text{ bei } 1000 \text{W/m}^2 \text{ siehe Datenblatt}}$$

Praxiswerte:

strahlender Sonnenschein ohne Wolken im Sommer: ca. 1000 W/m² strahlender Sonnenschein ohne Wolken im Winter: ca. 600 W/m² leicht bedeckter Himmel: ca. 700 W/m² stark bedeckter Himmel: ca. 200 W/m² trübes Novemberwetter: ca. 50W/m²

Notieren Sie Ihre Beurteilungen hier:


Experiment 3 (optional): Smartphone laden mit dem Solarmodul SUSE 4.52

Smartphones und tablets werden mit 5V DC über einen USB- Stecker oder Apple- Stecker geladen. Da die Ausgangsspannung des Solarmoduls SUSE 4.52 zu hoch ist, wird der DC-DC-Wandler SUSE 4.17 mit USB- Ausgang dazwischengeschaltet. Zu Messzwecken wird noch ein USB-Multimeter in den Ladestromkreis eingebaut.

Bauteile: 1x Solarmodul SUSE 4.52 (10W), 1 DC-DC-Wandler SUSE 4.17, 1 USB- Multimeter,

2x USB- Kabel, 1 Solarstrahlungsmessgerät SUSE 5.23

Aufbau:

Experimente:

- 1. Richten Sie das Solarmodul optimal zur Sonne aus, bei bedecktem Himmel zur hellsten Stelle des Himmels. Ganz exakt geht das mit Messung des Kurzschlussstroms, dieser sollte maximal sein!
- 2. Schließen Sie die Geräte gemäß Aufbauanleitung an.
- 3. Beobachten Sie die Ladung des Smartphones und messen Sie mit dem USB Multimeter

Die Ladespannung:.....V

Den Ladestrom in Abhängigkeit von der Bestrahlungsstärke (mit SUSE 5.23 messen):

Die aufgenommene Ladung in mAh nach:

5 min:.....

10min:.....