

innovative Solarsysteme für Schule und Ausbildung innovative solar- systems for school, college, technical education

- Solardidaktik
- Solarzellen
- Solarmodule
- Photovoltaik- Experimentiergeräte
- Photovoltaik- Gerätentwicklung
- Experimentieranleitungen didaktische Konzepte
- Solarberatung
- Solar- Workshops
- Solar- Fortbildung für Lehrkräfte
- solare Aus- und Weiterbildung
- Solarspielzeuge

- solardidactics
- solar cells
- solar modules
- photovoltaic -experiment devices
- solar- experiment- manuals
- solar- workshops
- solar consulting
- solar education
- solar training for teachers
- solar toys

SUNdidactics Wolf-Rüdeger Schanz, Schaperbleek 15, D-31139 Hildesheim, Germany

Phone: +49(0)5121 86 07 30 Fax: +49(0)3222 370 66 89 Mail: wr.schanz@t-online.de Mobile: +49(0)175 766 06 07 Web: www.sundidactics.de Mail: info@sundidactics.de

SUSEmod6 – a powerful and robust 2,48 V solar module for PV experiments

The solar module SUSEmod6 contains 4 solar cells in intern series connection Module dimensions 160x 75 mm 4 solar cells with 52 x 35 mm each

The solar module SUSEmod6 contains 4 solar cells in intern series connection. The solar cells are embedded break-proof in a plastic plate of the dimensions 160×75 mm. The surface on top of the solar cell is laminated super-transparent. On the rear side there are 2 soldering contacts for soldering on the positive and negative conductors. The solar module can be stuck to smooth surfaces on the rear side with double-faced adhesive tape or with glue. With this solar module single experiments as well as trials with series and parallel connections can be conducted or it can be used as a solar filling station for solar vehicles, e.g. in the modules SUSE 4.34, SUSE 4.35, and with the SUSE 5 solar boat 4. The module is especially suited for experiments with storage SUSE 5 and with SUSE 5 and with SUSE 5 and with SUSE 5 and SUSE 5 and with SUSE 5 solar boat 4. The module is especially suited for experiments with storage SUSE 5 and with SUSE 5 and SUSE 5 and

Module: plastic base plate 160 x 75 mm with super-transparent surface, mechanically very robust

Solar cell: multicrystalline solar cells 52 x 35 mm

Technical data with an irradiation of 1000 W/m², T = 25°C, AM = 1.5

Physical value	Symbol	Numerical value	Physical unit	Annotations
Dimensions cells		52 x 35	mm	Multicrystalline cells
Open circuit voltage	V _{oc}	2,48	V	Typical for silicon
Short circuit current	\mathbf{I}_{sc}	0,63	Α	Proportional to light intensity S
El. power	Р	1,2	W	With solar spectrum AM 1,5
Efficiency factor	η	mind. 16,0	%	Quality feature
Filling factor	FF	77	%	FF is a Quality feature
Current density	j	34,6	mA/cm ²	j is a Quality feature
Thermal behavior		- 0,36	% /K	The voltage decreases with an increase in temp. with 0.36 per 1K
Thermal behavior I _{sc}		+ 0,06	% /K	The short circuit current increases with 0.06 % per 1 K
Voltage at MPP	V_{MPP}	2,03	V	
Current at MPP	I_{MPP}	0,59	Α	
Power at MPP	P _{MPP}	1,2	W	

The V(S) (pink) and I(S) (blue) characteristic curves

The characteristic curves show the dependency of the open circuit voltage V (exponential function) and the short-circuit current I (linear function) on the irradiance S (light intensity)

0 = absolute darkness

1000 = bright sunshine in the summer half-year with deep blue sky

The I(V) and P(V) characteristic curves

The red I(V) characteristic curve shows the dependency of the solar cell current on the solar cell voltage with a resistive load on the solar cell. The intersection point with the x-axis is the open circuit voltage of the solar cell, the intersection point with the y-axis is the short-circuit current.

The power curve (blue) shows the maximum power point MPP.