

didaktische Konzepte – Solarberatung – Fortbildung - solare Aus- und Weiterbildung - Solarspielzeug Solardidactics + solar cells + solar modules + photovoltaic experiment devices + solar toys + solar education and training

SUNdidactics Solar Systems

Phone: +49(0)5121 860730 Fax: +49(0)3222 3706689 Mail: info@sundidactics.de Mobile: +49(0)1757660607 Web: www.sundidactics.de skype: wolfschanz

The solar radiation measurement module SUSE 4.24A Analogue irradiance measurement device for measuring the solar radiation Technical manual and user guide

The radiation measurement device SUSE 4.24A, on the top roof side the solar cell is placed, on the lower roof side the display instrument, a 100 mA meter.

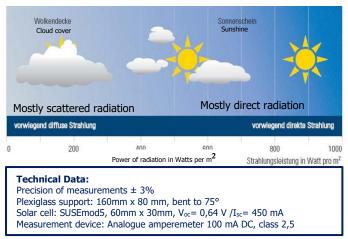
Display: 40 multiplied by 10 = **irradiance 400 W/m²** on a cloudy day.

The solar module **SUSE 4.24A is an analogue measurement device for measuring the irradiance S of the sunlight** or the light of light sources in the international measuring unit W/m².

Hildesheim, Germany

For measurements, the short-circuit current of the solar cell is used, which is proportional to the irradiance S. A mA meter with a 100 mA range serves as the display, the value "100" corresponds to an irradiance of 1000 W/m². The smallest scale division is 50 W/m².

A value of 1000 W/m² corresponds to the solar radiation of the summer sun at noon with bright blue and cloudless skies, this value is the standard test value for solar cells. 0 W/m² is absolute darkness, a dull, heavily clouded day has about 50- 100 W/m², a sunny day with misty clouds about 700 – 800 W/m². The device is available as a construction kit or a calibrated ready-to-use device.


Theory of operation:

The solar cell used in the solar module SUSEmod5 has a short-circuit current of 450mA with S = 1000 W/m². This value is supposed to lead to a display of "100" on the mA meter.

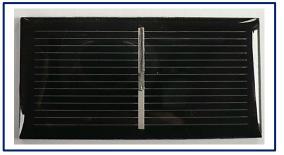
Therefor a current of I = 100 mA has to flow through the mA meter, the rest, 350 mA, through an appropriate shunt resistance in parallel connection around the measuring element.

The proper low-ohm shunt resistance is crafted from a piece of hookup wire, the dimensions, the exact kind of wire, and the method of calibration are included in each construction kit. For ready-to-use devices the calibration takes place at SUNdidactics.

Global radiation: What's measured is the global radiation, so all light coming from the sky and hitting the solar cell, the direct sunlight, light of the blue sky, and light of the white clouds. The international unit of measurement is W/m^2

User guide:

The device is adjusted with the solar cell towards the sun or another light source, the display on the measurement device is multiplied by 10, this results in the current irradiance in W/m^2 .


Under a clouded sky, the irradiance is different for different positions towards the sky, the varying values can be measured by adjusting the solar cell towards these zones.

An extensive experimentation manual for this device is available at SUNdidactics.

The technical data of the used solar cell is included on page 2.

SUSEmod5- a powerful and robust solar module for PV experiments

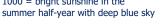
The **solar module SUSEmod5** contains a solar cell with exactly half the area of the solar module SUSEmod215, solar cell dimensions 52 x 26 mm, module dimensions 60mm x 30mm.

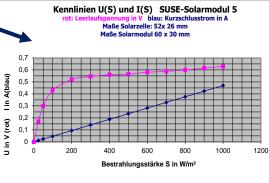
The two Cu platelets in the middle are the (marked) poles of the solar cell. Cell connectors or hookup wire can be soldered onto them.

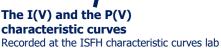
Front side

Back side

The solar module **SUSEmod5** contains a solar cell with half the area of the well-known SUSE solar cell SUSEmod215, the length of the solar cell is 52 mm, the width 26 mm. The solar cell is embedded break-proof in a plastic plate of the dimensions 60 x 30 mm. The surface on the solar cell is grouted/laminated super-transparent with plastic. On the back side there are 2 soldering contacts to solder on the positive and negative conductors. On the rear side the solar module can be stuck to smooth surfaces with double-faced adhesive tape or with glue. With this solar cell single experiments as well as experiments on series and parallel connections can be conducted, e.g. in the modules SUSE CM3xx, SUSE 4.31, and other devices.


Module: Plastic base plate 60 mm x 30 mm with super-transparent surface, mechanically very robust Solar cell: Monocrystalline solar cell 52 x 26 mm


Physical value Symbol Numerical Physical unit Annotations 0.7 value Dimensions of the 52 x 26 mm Monocrystalline cell 0.60 solar cel Voc V Typical for silicon 0.63 Open circuit voltage Short-circuit current I_{sc} 0,468 Α Proportional to light intensity S 0.50 El. power Ρ 0,228 W With solar spectrum, AM 1.5 Efficiency factor Efficiency factor of the energy η 17,0 % 0.40 conversion FF 77,3 % FF is a quality feature Filling factor mA/cm² 34,7 Current density j is a quality feature 0.30 Thermal behaviour - 0,36 % /K The voltage decreases with an open circuit voltage increase in temperature with 0.20 0.36% per 1K Thermal behaviour + 0,06 % /K The short-circuit current increases short-circuit current with 0.06 % per 1K 0.10 I_{sc} Voltage at MPP MPP= Maximum Power Point VMPP 0,52 V Current at MPP The product of both values is the Імрр Α 0.44 W Power at MPP Рмрр 0.23 el. power.


Technical data with an irradiation of 1000 W/m², T = 25°C, AM = 1.5

The V(S) (pink) and I(S) (blue) characteristic curves

The characteristic curves show the dependency of the open circuit voltage V and the short-circuit current I on the irradiance S (Light intensity) 0 = absolute darkness1000 = bright sunshine in the

The red I(V) characteristic curve shows the dependency of the solar cell current on the solar cell voltage with a resistive load of the solar cell. The intersection point with the xaxis is the open circuit voltage of the solar cell (0.63 V), the intersection point with the y-axis is the short-circuit current (0.468 A).

The power curve P(V) (blue) shows the maximum power point (MPP) = 0.23 W at the highest point.