

NILS-ISFH

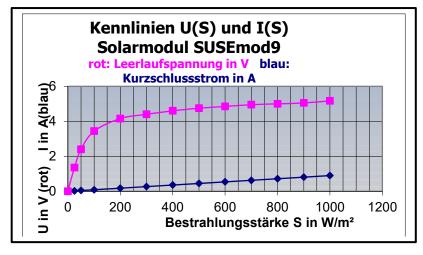
Niedersächsische Lernwerkstatt für solare Energiesysteme außerschulischer Lernort des Landes Niedersachsen am Institut für Solarenergieforschung ISFH An- Institut der Leibniz Universität Hannover www.nils-isfh.de nils@isfh.de +49(0)05151 999 100

Bildung für nachhaltige Entwicklung

SUSEmod9- ein leistungsstarkes und robustes Solarmodul 2,6V/5,2 V/899mA / 3,65W für Photovoltaik- Experimente und als Solartankstelle für die Solarfahrzeuge SF1.2 und SF6USBdual

Das Solarmodul SUSEmod9 enthält 8 Solarzellen interner in Reihenschaltung.

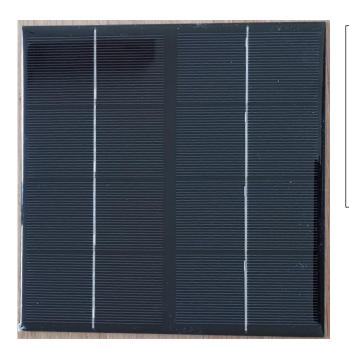
Modulgröße 160mm Χ 160mm, rechteckige monokristalline Solarzellen mit je Die Oberseite über der Solarzelle ist hochtransparent mit Epoxidharz beschichtet. Auf der Rückseite befinden sich 4 Lötkontakte zum Anlöten der Plus- und Minusleiter bei +2,6 V und +5,2V.


Das Solarmodul kann rückseitig doppelseitigem Klebeband oder mit Klebstoff auf glatte Oberflächen aufgeklebt Lieferzustand werden. Im Vorderseite mit einer Schutzfolie bedeckt, diese wird vor Erstgebrauch entfernt.

Modul: Kunststoffträger schwarz 160mm x 160mm mit hochtransparenter Oberfläche, mechanisch sehr robust.

Technische Daten bei einer Einstrahlung von S = 1000 W/m², T = 25°C, AM = 1,5

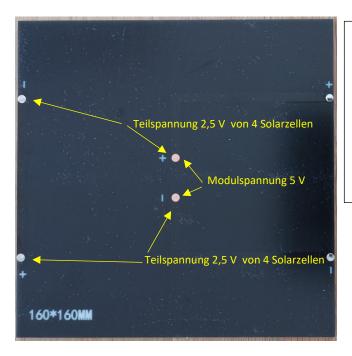
Physikalische Größe	Symbol	Zahlenwert	Physikalische Einheit	Bemerkungen
Maße Modul	S	160 x 160	mm	8 Monokristalline Solarzellen
Leerlaufspannung	U _{oc}	5,17	V	Spannung ohne Last
Kurzschlussstrom	I_{sc}	0,899	Α	Proportional zur Lichtintensität S
El. Leistung im MPP	Р	3,65	W	bei Sonnenspektrum S = 1000 W/m ² , 25°C, AM 1,5
Füllfaktor	FF	78,5	%	FF ist ein Qualitätsmerkmal
Temperaturverhalten Leerlaufspannung U _{oc}		- 0,36	% /K	Die Spannung mindert sich bei Erwärmung um 0,36% pro 1K
Temperaturverhalten Kurzschlussstrom I _{sc}		+ 0,06	% /K	Der Kurzschlussstrom vergrößert sich um 0,06 % pro 1K
Spannung im MPP	U _{MPP}	4,3	V	U- Koordinate des MPP
Stromstärke im MPP	I_{MPP}	0,847	Α	I- Koordinate des MPP
Format <u>einer</u> Zelle	S	36,5 x 73	М	8 identische Zellen in interner
Spannun <u>g einer</u> Zelle	V	0,646	m V	Reihenschaltung


Graphen links:

Die U(S)- Kennlinie (rot) und die I(S)-**Kennlinie** (blau)

Die Kennlinien zeigen die Abhängigkeiten der Leerlaufspannung U(S) (e- Funktion) und des Kurzschlussstroms I (S) (lineare Funktion) von der Bestrahlungsstärke S (Intensität des Lichts)

 $S = 0 W/m^2 = absolute Dunkelheit$


 $S = 1000 \text{ W/m}^2 = \text{strahlender Sonnenschein}$ mittags im Sommerhalbjahr bei tiefblauem Himmel

Vorderseite des Solarmoduls SUSEmod9

8 Solarzellen in interner Reihenschaltung Jede Solarzelle hat eine Leerlaufspannung von 0,65 V und einen Kurzschlussstrom von 899 mA.

Solarzellenmaße: 73mm x 36,5 mm

Rückseite des Solarmoduls SUSEmod9

8 Solarzellen in interner Reihenschaltung

In der Mitte 2 Lötpunkte für die Modulspannung 5,17 V

oben und unten links jeweils eine Teilspannung von 4 Solarzellen 2,6 V